Rapid Prototyping

Is Additive Manufacturing Another Gold Rush?

RapidMade.jpg

Sometimes the frenzy around 3D printing reminds me of  the Gold Rush... Additive manufacturing (AM) has a lot of value in and of itself, but, like the Gold rush, it is also having a transformative impact on its environment.  

Consider these similarities:

Challenges over land claims surfaced during the Gold Rush which prompted the establishment of property rights.  Many would argue that similar problems will arise from 3D printing's impact on intellectual property and patents.

Once the gold that was easiest to retrieve was gone, The Gold Rush encouraged technological innovation that enabled miners to extract more of the precious metal from the riverbeds and ground.  Almost daily, we read about advancements in AM - both in material applications and printing processes which in some cases are creating precious metals.

As the Gold Rush continued, only larger organized enterprises remained profitable.  While we are not there yet, we've seen a fair number of mergers and acquisitions for a relatively young industry.

Secondary industries fared well, if not better, than the miners themselves.  Merchants, shippers, lodgers and entertainers thrived when most miners failed to make money.  Today, an increasing number of 3D printing supplies, trade shows, conferences, publications, certifications, and courses are being offered.

San Francisco and California grew significantly from the influx of 49ers  The establishment of AM Centers of Excellence in Youngstown and Detroit may well reverse the population loss of the Rust Belt region. 

The Gold Rush spurred an economic boom.  Many industry experts and government officials believe AM will boost the U.S. economy by bringing back manufacturing. 

Let's just hope that we don't see some of the problems (environmental damage, human rights issues) the Gold Rush created.

                                   

Big Area Additive Manufacturing (BAAM) to Hit Market

BAAM machine; Source: Cincinnati

BAAM machine; Source: Cincinnati

Many think “bigger is better” and 3D printing is no exception.  Big Area Additive Manufacturing (BAAM) will hit this fall.  The US Department of Energy's Oak Ridge National Laboratory (ORNL) has partnered separately with two companies, Cincinnati Incorporated and Lockheed Martin, to commercialize large-scale 3D printers.  

Cincinnati's efforts are focused on creating "a 3D printer that is 200-500 times faster and capable of printing polymer components 10 times larger."  The printer is expected to be ready by early fall when Cincinnati will introduce a 3D printed "vehicle at the International Manufacturing Technology Show" (Beth McKenna).  

The Lockheed Martin project is more focused on size.  Imagine parts as large as 60-100 feet!

McKenna correctly questions whether either partnership can resolve the warping issue that plagues parts with non-uniform thicknesses but says that Lockheed will rely on carbon-fiber reinforced plastics to address this problem.

 

 

RapidMade to Print 3D Prosthetic Hand

The Engineering and Physical Sciences Research Council's Hi Tech Hand (http://phys.org/news/2013-10-future-d.html#nRlv)

The Engineering and Physical Sciences Research Council's Hi Tech Hand (http://phys.org/news/2013-10-future-d.html#nRlv)

In the field of 3D printing, medical advances have arguably received the most press, with good reason - 3D printed prosthesis are changing lives.  The London Science Museum is now featuring an exhibition that highlights one great example, a 3D prosthetic arm designed and manufactured by the Engineering and Physical Sciences Research Council's Centre for Innovative Manufacturing in Additive Manufacturing.  This prototype features "customised prosthetics with electronic moving parts and nerve endings, created by the research group at the University of Nottingham."

Unfortunately, the cost of high tech prosthesis like this is a serious drawback , especially when children are involved.  Kids need a medical device that won't cost an ar - well you know  the expression - their changing bodies require a less expensive alternative that can be replaced as needed to accommodate growth.

Version of McCarthy's Robo Hand RapidMade is Evaluating (http://laughingsquid.com/dad-makes-a-low-cost-3d-printed-prosthetic-hand-for-his-son/)

Version of McCarthy's Robo Hand RapidMade is Evaluating (http://laughingsquid.com/dad-makes-a-low-cost-3d-printed-prosthetic-hand-for-his-son/)

RapidMade is very excited to be partnering with a 13-year-old Oregonian who has a congenital amputation to customize, print and fit an inexpensive hand for him to evaluate.  Alex and his mom, Lori, visited us earlier in April to discuss the project and provide his measurements. 3D printing will allow us to size the prosthetic to match his hand instead of a "one size fits all" device. David, our engineer, has already begun printing parts and assessing design features. RapidMade hopes to make plastic prosthetic hands out of ABS plastic using fused deposition modelling (FDM) and Nylon using Selective Laser sintering (SLS) in order to better meet patients' specific needs for price and quality.   

We are grateful to Paul McCarthy who designed and shared the original version we are evaluating.  He and other designers have made their work available for free through open sourcing to drive down costs.  As 3D users already know, it is often the product design phase that is the most costly and time consuming, so to have a ready-to-print CAD file is an enormous benefit.

If this trial is successful, we hope to become part of a network that provides low-cost prosthesis to others who are similarly challenged.  Stay tuned for updates on our progress...

4D Printing

Advances in 3D Additive Manufacturing technologies are far too often attributed to advances in the actual 3D printers themselves, but the machines are only 1/3 of the equation.

Often times new, innovative materials and software can have an even more profound impact on available products in the industry, or in this case, any industry.

The U.S. army just invested $855,000 in multiple projects around the development of "4D printing" software. Don't let the name fool you. The structures are created using the same 3D printing techniques on the market today, but this software allows for fundamental alterations in part design that allow the final construction to be completed after the part has been created.

By making parts out of hundreds to thousands of little, jointed components we can take advantage of new properties resulting from complicated assemblies. Additionally, we can now create objects that would have originally been too large for the relatively small beds of 3D printers.

These complicated assemblies would be far too labor intensive and costly to manufacture using any other technology available today.

Useful examples would include the dress in the video which behaves differently as we vary the size and placement of the joints throughout the dress's structure. We could also create very large objects previously compressed which snap into place to create a rigid, permanent structure much larger than the compressed one.

A lofty goal of this software would be to fabricate large objects on site in remote locations, like on an air craft carrier or on a colony in space where real estate for such equipment may be at a premium.

The beauty of Additive Manufacturing is that the users see new capabilities such as 4D Printing and come up with their own amazing applications.

Eight Common Rapid Prototyping Mistakes

The good folks at Malco Design created this fantastic white paper about the common pitfalls people experience when making rapid prototypes. The eight examples are really important to understand so that expectations and decision making can result in an optimal prototype tailored to the customer's needs. They are:

1. Poor communication/coordination between designer and prototyper - There are many variables that effect the final part strength, features and dimensions, like overall part size, process used or build orientation. It is very important that the prototyper make clear where uncertainty can occur and how to minimize it and just as important that the customer make clear the critical requirements of the prototype.

2. Overestimating users' knowledge of rapid prototyping - Many services bureaus are receptacles for uploading files and producing them in order to cut down on labor. In those instances it is incumbent upon the customer to know all the rules of rapid prototyping, may of which change over the course of months as new technologies and materials are developed. Prototypers need to keep designers informed and designers need to be vigilant to fill in their own gaps in knowledge.

3. Belief that anything can be built as a rapid prototype - There is a lot of hype in the industry that rapid prototyping can build anything and solve any design issue. Vary large parts are often not suited for the process and unless doing rapid machining, same goes for tight tolerances. Sometimes when experiences don't line up with expectations, customers are wary to use the technologies again.

4. Expecting prototypes to be perfect the first time - My favorite by far! If prototypes were always perfect, you wouldn't need them and you would instantly cut your $50,000 mold. Never forget that prototyping is an iterative process and some design flaws cannot be discovered until one tests the physical prototype in front of them.

5. Using wrong materials or processes - SLA or Polyjet photopolymers degrade in UV light over time, making them not great for production parts, SLS can have rough surface texture and feature definition, Z Prints are brittle and FDM has great variance in strength between its layers. Each of these processes has innate benefits as well. Selecting the correct material and technology is essential to getting the prototype right the first time.

6. Selecting a vendor whose capabilities don't match your needs - Some vendors are fast. Some are knowledgable. Some focus on good customer service while others focus on bargain basement pricing. Research the company with whom you plan to do business. All prototypers are differentiated to work with a specific customer niche and you should make sure you are the customer that fits their capabilities and strengths.

7. Ignoring the value of prototyping - Time is money and many companies are willing to put the extra cash down to get the product right the first time and as fast as possible. Tooling up a factory for mass production is a lengthy and expensive process. The later an error is discovered, the more costly it is and the longer it takes to solve. This could be devastating for companies trying to maintain their margins or release products when consumers actually buy them (think electronics at Christmas or pool toys in the summer.)

8. Building more than is necessary - Many times designers try to make an entire assembly without being sure that each individual component works correctly first. It can save a great deal of cost and time if the components are individually created, and then, once proven, used to build a larger, more complete device.

3D Printed Casts

The technique is antiquated and could use a little something of a shake up thanks to new technology.

Setting castings in plaster is centuries old and has a variety of uncomfortable problems. Scanning and imaging of the body are common place in the medical field in order to diagnose injuries and illnesses, but the ability to create prosthesis and custom fixtures directly from those scans is brand spanking new, from printed bones and teeth implants to entire artificial limbs. The parts either fit to the contours of your body or are exact replicas of the body part which they replace. 

This technique now produces a superior cast taken directly from a 3D scan of the broken body part and 3D prints a cast from the digital negative. The cast is designed with snap fits which enclose the arm, keeping it from moving, but making it accessible to air and hands. Much more comfortble.

Just another simple example where the medical field can benefit from applying new technologies (additive manufacturing/3D printing) to ones that are already pervasive in the medical field (3D scanning and imaging.)

Additive Manufacturing in Aerospace

A stainless steel bracket optimized for weight reduction (front) and the traditional cast bracket in the back.

A stainless steel bracket optimized for weight reduction (front) and the traditional cast bracket in the back.

Additive manufacturing (AM) has long been the holy grail of Aerospace OEMs like Boeing and Airbus. Where typically the costs of metal laser sintering can be prohibitive to mass producing parts, in the aerospace industry volumes are low enough and the design optimizations can easily pay for themselves in fuel and material savings. 

EADS Innovation Works recently released a study that says implementing additive manufacturing into planes and other aircraft could reduce material use up to 75% and fuel consumption up to 40%. 

Let's set aside the obvious environmental benefits for a moment. In an industry that is a slave to fuel costs and customers who always buy the lowest sticker price ticket off aggregator websites, airlines tend to get squeezed when it comes to making their margins.

Cutting just one pound of weight out of an aircraft can save over $10,000 in fuel costs every year. Not only do AM parts cut out that 75% of the material by only using structure where it is absolutely necessary, but light weight, high cost metals like titanium are now available where they were traditionally cost prohibitive, further lightening the load.

Machining titanium parts from billet generally causes up to 90% material waste versus virtually no waste from making the parts additively. Couple that with needing less material in the part design as a whole and scores of components that used to be made from stainless steel or aluminum can now be made from the valuable metal.

This is why we now hear engineers and executives dreaming about the development of printers that are large enough to manufacture entire wings. They see the value in a future where aircraft are created entirely from printed components. 

Maybe the additional payload provided by these technologies will eventually even eliminate the need for bag fees. Unlikely, but one can dream!

6 Axis Extrusion Printing

Be warned, for this is only a prototype, although a cool one at that. Unlike your home Makrbot, or even industrial level Fused Deposition Modelling machines made by Stratasys, this 6 Axis(!) extrusion printer prototype can extrude far more than layers. Capable of printing directly on a curved object or making multi-directional print lines, this literally adds a new dimension to extrusion printing.

There are two typical weaknesses of extrusion based printing that a 6 axis printer fixes. First is that between layer lines, the strength of an object can be up to 75% weaker than along the planes of the layers. 

Additionally, machines require disolvable support material to make complicated geometries with undercuts, a technology on which Stratasys machines have an exclusive patent. The 6 Axis machine creates these geometries without violating patent law.

Cheers to novel ideas. 

Bentley Uses 3D Printing to Design Vehicles

Bentley makes to scale models in hours instead of weeks to validate designs and increase time to market.  

“We can simulate what a car is actually going to look like and show our bosses absolute reality.”

 – Kevin Baker, Design Model Manager.

This  helps speed up the approval process and make sure the concept of the design is perfect before investing too much time and money in working on flawed individual components.

Check out the video below and remember that you don't have to invest hundreds of thousands of dollars in equipment to get the same models and prototypes that Bentley makes in house if you contact RapidMade!

A Great Infographic Breakdown of the 3D Printing Market

Everybody loves infographics, almost as much as they love 3D printing. Combine the two and you get a pretty concise look at some important metrics in our field, like what technologies and service bureaus people use, the make-up of professionals in the field, and why people use 3D Printing.