Injection Molding

When Are Casting and Molds Better than Injection Molding or 3D Printing?

urethane+rubber+part+removed+from+mold.jpeg

It's important to remember that 3D printing is a means to an end, so we always have to ask ourselves, based on what a client wants to achieve, what's the best path to take to get there.  Sometimes, the answer isn't 3D printing.  One alternative is casting and mold making which is worth considering when you want:

  • Low to medium part quantities - from 10s to 1000s
  • Production-quality finishes with the look and feel of injection-molded parts
  • To spend less -
    • Typically lower unit costs than direct part printing
    • Fraction of the tooling cost required for injection molding
  • To cut lead time from months to weeks for tooling compared to injection molding
  • To select:
    • Food-grade and medical-grade materials
    • Elastomers to rigid plastics ranging from 20A - 90D durometer
    • Other materials such as silicone, plaster, concrete and other composites
  • To create electronics housings, gaskets, cosmetic parts, displays and low volume production

To see if this approach is suitable for your project, check out these Design Guidelines.

HP Jet Fusion Delivers Injection Mold Quality without the Mold

3D printed part

3D printed part

Mold no more!  For small and medium-batch production runs, slash cut part cost and accelerate delivery speed with HP Jet Fusion:

  • No tooling costs
  • Limitless iterations
  • Design freedom
  • Lower engineering costs
  • Collapsed delivery timelines
  • Production-quality parts

Contact us for a quote.

When to Choose Injection Molding or 3D Printing

RapidMade Accelerates Pace and Elevates Quality of Product Launch

Injection Molding Case Study

3D Printing, or Rapid Prototyping as it is also known, is a much faster and cost effective solution for testing and perfecting digital designs. Its ability to fabricate parts overnight without any direct labor, programming or tooling means 3D printing technologies carry many advantages over traditional technologies like injection molding for short turns and small-batch production.

 Sometimes 3D printing only goes so far when developing and manufacturing products in their early stages. In those instances, Rapid Injection Molding can take products to the finish line.

An American-made LED light bulb manufacturer engineered a version that was bigger and brighter than its competition.  The company quickly learned that RapidMade's injection molding expertise could test, validate and even manufacture its light bulbs in ways that 3D Printing simply could not match.

RapidMade accelerates the typical injection molding process by providing a short cut between prototyping and production tooling. After the rapid prototyping client finalizes its product for injection molding, RapidMade creates a cheaper and better solution by making pre-final tooling out of aluminum. This option allows customers get to market sooner than other injection mold processes and helps gain customer feedback to improve products. Getting a product to market sooner generates more revenue to invest in further product development and long-term tooling. 

 Material

Since the customer didn't know what the final material of the bulb should be, cutting the mold and testing multiple materials, including different grades of ABS and Polycarbonate, helped pinpoint the final material and even helped estimate eventual mass manufacturing costs. Additionally, electronics products must go through rigorous UL testing to ensure consumer safety before the product can be sold in stores.

Color and clarity are other traits vital to the lighting industry.  Because 3D printers must run manufacturing-grade material that is unadulterated, optimizing these characteristics can be difficult. With injection molding, however, one can custom blend different clear and opaque pigments with clear plastic to prototype different levels of clarity and color. So the company could test very specific color profiles to perfect its formula in the final product.

 Finish

Finish is extremely important when working with lighting, as well as other consumer products. A matte finish diffuses light at a very different rate than a polished one. Due to the layered nature, inherent in the 3D printing process, even the highest detail machines will have some level of surface striation. Additionally, most filament or powder technologies will have a very rough finish beyond the layer lines. Achieving custom finishes requires polishing, sanding, and painting of each individual unit, making it is extremely labor intensive and expensive.

Alternatively, injection molding shoots molten plastic into a cavity which picks up the texture of that cavity. That means one only needs to finish a mold once to get repetitive shots of that finish. And molds can be polished and textured to prototype a variety of finishes before settling on the desired one.

Volume

A light bulb is a relatively low-cost consumer good. These goods are meant to be sold in large volume at low cost. Tooling to produce those volumes inexpensively enough can take months to make and require high upfront investment. Many businesses are interested in small and medium-batch options that are more cost effective and higher quality than 3D printing to excite investors, test markets and stoke demand. 

 The company secured a prototyping option with relatively little upfront investment that served as a bridge tool to get actual product out into the marketplace. Aside from the aforementioned quality concerns, this could not have been cost effectively achieved with 3D printing; one cannot sell a light bulb where the housings cost $38 to the manufacturer. Creating large volumes of parts on a 3D Printer can also take much longer than injection molding, making it harder to fill orders. Injection Molding can really provide exceptional value to early-stage manufacturers when producing runs of hundreds or thousands of parts for low cost very quickly.

 

Use RapidMade to Rapidly Make Industrial Patterns and Tools

Epoxy and Silicone Molds are popular

Epoxy and Silicone Molds are popular

RapidMade Advantages:

  • Reduce Cost
  • Decrease Lead Times
  • Keep Intellectual Property in the US
  • One Stop Shop for Design, Tooling and MFG
  • Unprecedented Ease and Design Freedom

Types of Available Tooling and Parts:

Epoxy and Silicone Molds

  • Tooling in days, not months
  • Reduces investment costs for short run production
  • Lower material costs than 3D Printing
  • Reusable tooling allows for many castings
  • Many available casting materials, including but not limited to:  Urethane, epoxy, polyester, medical and food grade resins, plaster, and many other resins and composite materials

Injection Molds and Inserts

  • Injection mold tooling in days to weeks, not months
  • Very inexpensive part cost
  • Tool life from 10k+ unit from prototype tooling to hundreds of thousands of units from production tooling
  • Top quality aesthetic finish and mechanical properties compared to other Rapid Prototype technologies

Sand Casting Patterns

  • Least expensive way to fabricate quantities of small to large metal parts
  • Typical materials are aluminum, bronze, zinc and steel
  • Tooling can be produced in less than 1 - 2 weeks and cost a fraction of traditional methods
  • Capable suppliers of core boxes, follow boards, gates and risers and other necessary sand cast tooling
  • Unit production in days, not weeks

Investment Cast Patterns, Molds and Waxes

  • Highest quality of finish of all casting methods
  • Typical materials include aluminum, bronze and steel
  • Available tooling includes: master patterns, silicone rubber molds, and wax burnout patterns
  • Can direct print one-off or small batches of direct burnout patterns without investing wax tooling

Vacuum and Thermoform Tooling

  • Heavy gauge production plastics available like ABS, Polyethylene, Polystyrene and Polycarbonate
  • Light gauge packaging plastics available like PET and Polystyrene
  • Can form parts up to 12 feet long
  • Prototype tooling available in as little as a couple of days
  • Production tooling is good for over 100,000 forms and is porous for highest part quality

Carbon Fiber, Fiberglass and Other Composite Tools

  • Decrease tooling and mold lead time compared to traditional methods
  • Increase complexity of design without increasing cost
  • Soluble cores available for hollow parts
  • Waxed finishes available for easy de-molding
  • Save money on prototype and production tools

Sheet Metal Stamping and Forming Tools

  • Very low cost tooling for small batches of sheet metal parts
  • Male and female tooling available for traditional two die stamping as well as single die hydro-forming
  • Tools delivered in a fraction of the time compared to traditional methods
  • Inexpensive and durable composite tooling available as castings from pattern

Robotic Arm End Effectors

  • Custom tooling that fits any part with complex internal geometries like vacuum channels
  • Reduce weight, inertia and material waste during fabrication
  • Simplified designs are easier to engineer, manufacture and assemble - cutting down on cost and time for tooling fabrication
  • Improve tool life by cutting down on breakable components

Molded Paper Pulp Packaging Tools

  • Get high accuracy tooling for a fraction of the cost of machined tools
  • Prototype tooling can also be used as permanent tooling good for thousands or even tens of thousands of molds
  • Tools can be turned around in days instead of weeks
  • Tools can be used as patterns to make tooling for multiple lines or facillities

Custom Jigs, Clamps, Fixtures and Other Tooling

  • Most miscellaneous tooling can be fabricated rapidly and for less cost using additive manufacturing
  • Use existing CAD data for the part to design mating tooling
  • Quickly test for geometric conformity or hold parts for post operations or inspection

Get a Quick Quote today.


Stop Waiting and Paying for Expensive Tooling to Test Your Rubber Products.

Decrease R&D cycles and save money by direct 3D printing with RapidMade.

How do you prototype or fabricate small batches of rubber, urethane or other elastomers products when?

Soft elastomers won't machine.

Fabrication by sheet lamination and gluing is inaccurate, weak and ugly.

Injection molding and other casting methods can take weeks to months and require expensive tooling.

Instead, 3D print your next rubber product design. RapidMade has successfully manufactured hundreds of gaskets, connectors, covers, plugs and other rubber products for a myriad of industries.

Advantages of using RapidMade for prototype and small-batch rubber product fabrication includes:

Fast turn around - Printed rubber products delivered in as little as 2 - 3 days.

Inexpensive low volume production - 3D printing has no tooling. Order as few as one part on short notice.

Multiple material options - Our 3D printed Thermoplastic Urethane rubber comes in shore 40 and 70 A durometers and a wide range of colors. Find our more about our SLS TPE material.

Multi-material prints - Using our polyjet technology, embed gaskets and other rubber materials directly inside of a rigid plastic assembly. Mix plastics to get over 100 digital materials ranging from shore 20A to 85D hardness.

During and After Prototyping - RapidMade offers expert engineering and design services as well as competitively priced urethane casting and injection molding options for larger volume production.

Fill out our Quick Quote form to get your inquiry started today!