3D Scanning Works as High Tech Insurance Policy

Photo Credit: Joe Shearer/The Daily Nonpareil via AP

Photo Credit: Joe Shearer/The Daily Nonpareil via AP

Iowans have 3D scanned the historic Dark Angel Statue in Council Bluff, IA in an effort to preserve this piece of art. The statue, officially a memorial to the wife of a local Civil War general, is 96 years old and was sculpted by Daniel Chester French, who is better known for another work of his-the Lincoln Memorial in Washington, D.C. The people of Council Bluffs raised enough money to get the statue scanned so that if any parts break off or if it falls into disrepair, it can be easily replicated with the exact dimensions of the original design. The community is happy with its investment in the preservation of the local landmark and historic work of art.

If only ancient Egyptians had had the technology, we would know what the Sphinx’s nose looked like.

Research Study Demonstrates Benefits of 3D Printing in Surgical Outcomes

Study confirms value of 3D printed models in planning wrist surgeries

Study confirms value of 3D printed models in planning wrist surgeries

If you read our blog, you know that we are especially interested in the medical applications of 3D printing.  I've written a few times about its adoption in surgery planning.  Now a recent published study conducted by Italian surgeon Dr. Nicola Bizzoto quantifies three advantages of 3D printing a patient's wrist (distal radius) fracture before operating.  

Having an exact replica of the broken bones allows the physician to thoroughly plan the surgery in advance, knowing where to place screws and which plate size to implant. This preparation reduces operating room and anesthesia times.  Shorter surgeries save hospitals money and less anesthesia improves patient outcomes.  The model can also be used to improve patient education.

I only wish this practice had become widespread before my wrist surgery in 2014. The operation took longer than planned because my wrist was worse than expected - there were bone fragments that had to be removed.  As a result, the anesthesiologist had to fully sedate me, and I ended up spending New Year's Eve in the hospital - not a Happy start to 2015, so while I hope to never go through a similar procedure again, I'm heartened by the increased popularity of 3D printing in medicine.

 

3D Printing Battles Animal Extinction

Ivory-look-alike artwork (Image Credit: 3ders.org)

Ivory-look-alike artwork (Image Credit: 3ders.org)

3D printing enthusiasts are using additive manufacturing to combat animal extinction on multiple fronts.  One Italian-based artist, Andrea Pacciani, is creating exotic ivory-alternative objects that she hopes will entice patrons toward her "sustainable, animal-friendly pieces."  Not only do the items look and feel like ivory, because they are 3D printed, Pacciani is able to create designs that cannot easily be produced with traditional carving methods.

The International Fund for Animal Welfare (IFAW) has also adopted the technology to create a graphic reminder that we won't be able to just 3D print more animal species if they are driven to extinction.  Its ad campaign, produced by Young and Rubicam, shows partially printed, like-like reproductions of an elephant, orangutan, and whale to communicate its dire message.

Other nonprofit firms, such as Paso Pacifico have used 3D printing creatively to advance their causes.  Paso Pacifico chose

to create 3D printed decoy sea turtle eggs to track and take down poaching rings, and scientists at the International Centre for Birds of Prey (ICBP) have 3D printed vulture eggs embedded with micro-sensors to learn vital information about vulture nesting habits.

These initiatives show the commitment and ingenuity dedicated to saving at-risk species and the potential and versatility of 3D printing.

Fashion Industry Gets 3D Make Over

3D Printing took another turn on the fashion run way.  The revolutionary technology was on display at the 2016 Met Gala "Manus x Machina: Fashion in the Age of Technology." The gala showcased new clothing inspired by myriad technologies; among them, 3D printing was prominently featured. Additive Manufacturing, another term for 3D printing, is a fashion designer's choice to enhance and support the unique geometry of garments. There is a variety of applications though, from remote controlled clothing to printable fashion.

Shell Uses Rapid Prototyping to Improve Planning, Reduce Cost & Increase Safety of Deep Water Project

Photo Credit: Shell/3Dprint.com

Photo Credit: Shell/3Dprint.com

2D engineering drawings fail to capture the minds and hearts of lay people.  I remember Nabisco engineers willingly sharing their blue prints with production employees to coax their input and buy in to equipment designs and line lay outs.  These machines and lines can cost millions of dollars, so there's a real need to "get it right the first time."   Invariably there would often be miscommunication and frustration when both parties thought they were getting what they needed only to discover when the equipment was delivered and the line was installed that they had missed the mark - sometimes quite literally.  One time, the operator was on one side of the line and the controls were on the other!

Now, 3D printing and rapid prototyping allow stakeholders to physically see, touch and manipulate what is being proposed.  They can more easily assess what will work and what won't, saving time, money and aggravation.

In one such situation, Shell Oil recently produced a prototype that allowed the firm to design and construct an elaborate buoy.  As one executive explained

that for the offshore crews in particular there are challenges due to the high cost of installation. Patterson also says that their crews in ‘the Americas’ have been exploring 3D printing for prototyping. Upon working in the Stones project in the Gulf of Mexico—about 200 miles southwest of New Orleans—engineers were faced with how to put together enormous blocks of syntactic foam into a buoy that would need to disconnect to an FPSO (Floating Production Storage and Offloading) vessel area at what is going to go down in history as the world’s deepest water installation at 2,900m of water.

Can you imagine hauling something that large, expensive and complex out to sea only to discover it didn't work as engineered?  This is a great example of why rapid prototyping was one of the earliest applications of 3D printing technology.

If you are interested in learning more about how rapid prototyping can improve your next project, please contact RapidMade.  

New Balance Enters 3D Printed Shoe Race

Photo Credit: Brittany Herbert/Mashable

Photo Credit: Brittany Herbert/Mashable

New Balance joins Nike, Adidas and others in the race to gain a foothold in the 3D printed shoe market.  NB has announced a new $400 sneaker that utilizes additive manufacturing. As technology develops, shoe companies are looking for new, innovative ways to make shoes stronger, more comfortable, more versatile and adaptive. The sneaker touts a new porous insole that molds to the wearer’s foot. This is another example of how 3D printed wearables are becoming more prominent and how the expansion of 3D printing technology is spurring creativity in industry.  Time will tell if the industry has put its right foot forward.

GE Opens New Additive Manufacturing Facility in Pittsburgh

As Pittsburgh natives, we've been awaiting the Opening of GE's New Additive Manufacturing Facility there.  The Grand Opening was earlier this week.  Officially named the Center for Additive Technology Advancement (CATA), the plant is officially located southwest of the city near the airport in Findlay Township.  The move symbolizes GE's belief that improving the speed and effectiveness of additive manufacturing will give it a strategic advantage.  Just "down the road" from Carnegie Mellon University and the University of Pittsburgh - Hail Pitt - perhaps GE will collaborate with these schools on AM research.

According to Business Wire, 

The new facility represents a $39 million investment over three years and will result in the creation of 50 high-tech engineering jobs initially, in disciplines ranging from mechanical and electrical to systems and software engineering. This is GE’s first multi-modal site in the U.S., designed as an innovation hub offering training and development in both design and applications.

Having lived through the repeated Pittsburgh-based plant closings of the 80s and 90s, personally we're hoping this is just the beginning of a bright, high-tech renaissance for SW Pennsylvania.  

Cambridge University "Makes No Bones" about Using 3D Printing to Recreate Replicas

Photo Credit:  NewHistorian.com

Photo Credit:  NewHistorian.com

We've written before about using 3D printing to create artwork and artifacts.  These stories are especially interesting to us given that RapidMade has been privileged to 3D print both originals and replicas.  And apparently we are in good company...

In another brilliant example of this approach, Cambridge University is 3D scanning and printing reproductions of Ox bones.  During the Shang Dynasty in China, roughly 1339 BCE-1112 BCE, oracles would inscribe their writings on Ox bones which are being recreated for research and educational purposes. These bones provide insight into the way of life during the Shang Dynasty. Archaeologists, anthropologists, and historians alike can now safely continue to learn from the information contained in these bones while ensuring their preservation.  The university’s collection contains over 600 bones (that is a lot of scanning and printing) which will now be more readily available for study due to these replicas. 

UCLA "Cements" Its Reputation Using 3D Printing to Capture CO2

We've blogged before about ventures that have involved 3D printing houses.  Now, UCLA researchers are working on a 3D printing process that allows them to reuse captive carbon dioxide as an ingredient in cement.  They call their revolutionary material CO2NCRETE.

Now that they've identified a process that works, the team is thinking about how to scale up and commercialize it so the 3D printed CO2NCRETE can be marketed and sold:

We know how to capture the carbon. We know how to improve the efficiency. We know how to shape it with 3D printing, but we need to do all of that at the lab scale now, and begin the process of actually increasing the volume of material and then thinking about how to pilot it commercially,” states DeShazo, who has been responsible for providing ‘public policy and economic guidance’ in terms of this research.

Maybe someday, the 3D printed cement can be used to 3D print those houses.

 

"Armed" with 3D Printing, MIT Scientists Build Hydraulic Robots

Credit: Newscientist.com

Credit: Newscientist.com

MIT researchers recently turned to 3D printing in order to build a mobile robot. Leveraging one advantage of 3D printing, the robot’s body was printed in one piece capable of movement using hydraulics. Both in universities and at home, roboticists are looking more to 3D printing to build unique parts, rapid prototypes, and even robotic prostheses. Though the relationship between the two industries is just beginning to gain momentum, there are already myriad ways in which 3D printing has opened up possibilities for makers and businesses in the field of robotics.

3D Printed Titanium Vertebrae Saves Life of Cancer Patient

Credit: 3Dprint.com

Credit: 3Dprint.com

Dr. Ralph Mobbs of the Sydney Spine Clinic turned to 3D printing to save the life of a patient suffering from a rare form of cancer. Drage Josevski was diagnosed with chordoma, a cancer that affects the spine.  His case was especially difficult because  the tumor was located in his top two vertebrae. Dr. Mobbs performed a landmark procedure that replaced the vertebrae with a 3D printed titanium implant. Josevski’s surgery was a success, and he is in rehabilitation to adjust to the implant. This achievement is yet another example of the possibilities 3D printing creates for the medical field.

Artist Uses 3D Printing to Preserve Antiquities Lost to ISIS

Credit: Andy Wood

Credit: Andy Wood

We've posted before about artists using 3D Scanning and Printing to recreate antiquities damaged by ISIS and to digitally catalog priceless exhibits.  Another effort is being undertaken by an Iranian artist in Mosul, Iraq.

Morrehshin Allhyari is working on an exhibition of 3D printed replicas of artifacts destroyed at the Nineveh Museum in Mosul, Iraq by ISIS. Taking images and 3D scans of the museum’s collection, Morrehshin is able to replicate the lost artifacts with 3D printers: “The more files that are saved on people's computers, even if they’re never printed, the number of PDF files that are read or kept, the more that history that was initially removed by ISIS will be saved.” The exhibition is titled “Material Speculation” and is widely seen as an act of historic preservation, political activism, and art, simultaneously. It also makes a great point of the pragmatism of using 3D scanning and printing technology for museum collections and historic exhibitions. 

3D Printed Iceman Heats Up Museum Display

Photo Credit: 3Dprintingindustry.com

Photo Credit: 3Dprintingindustry.com

One popular application of 3D printing is creating exact reproductions of antiquities.  As is often the case, museums want to display artifacts but face challenges making priceless objects available to the public.  The latest example of this technique is the recreation of the Iceman.  

Ötzi - the Iceman, the oldest European mummy, was replicated by Additive Manufacturing. Two 3D replicas have been made for display at the South Tyrol Museum in Italy. Using CAT scans taken of Ötzi, the models were rendered and printed using 3D engineering and manufacturing techniques. Once printed and assembled, a rubber mold was applied to the replicas, which were then sculpted and painted. Because Ötzi needs to be preserved, he will be stored in stable conditions while visitors of the museum can see these identical models.

Researchers at Wake Forest 3D Print Ear, Bone and Muscle Structures

The prospect of medical teams being able to print replacement body parts is exciting.  As someone who has experienced reconstructive surgery, the idea that surgeons can perfectly recreate an exact match brings great hope.  Patients would no longer have to rely on artistry and good fortune - or repeated surgeries - to obtain symmetrical, life-like results.

New 3D printing technology created by a team at Wake Forest University in North Carolina is showing great promise reliably printing human tissue and organs. Bioprinting, as it is known, is a big leap for medical technology and is now coming into its own as an effective and beneficial means of healthcare and healing. The bioprinter works similarly to other 3D printers, but instead of printing in metals or plastics, it prints hydrogels containing human cells. What is special about this new printer is that the tissue that it prints is able to accept blood vessels and therefore essentially keep the cells alive. This research is especially exciting for the medical community, which is already looking to the future and the potential that this technology has for us.

3D Printing Makes Custom Solder-Free Circuit Boards Cleaner and Easier

It is now easy to make your own custom solder-free circuit boards through 3D printing. An independent creator on DIY website Instructables has 3D printed its own personally designed circuit board. The circuit board was created in CAD, printed, and its trace channels lined with conductive material. Once built, this circuit board does not require solder to establish working electrical connections, an easier and cleaner way of building your own circuit boards. This is perfect for hobbyists but also indicative of the many custom applications 3D printing can have in technology development. Read the article for more details on how to build your own custom circuit board.

RapidMade Expands Services Offered

3D Printing, Manufacturing and Engineering

RapidMade's services now include:


Product Design and Engineering

  • Simple static part design to fully automated mechanical and electrical equipment
  • Design for prototyping and manufacture
  • In-house prototyping capabilities for faster iterations and overnight customer feedback
  • 2D and 3D drawings, tolerance and other manufacturing specifications, technology transfer and patent application documentation, equipment manuals, FDA and other compliance as well as other specialized engineering work

Rapid Prototyping

  • 3D printing, quick-turn machining, traditional metal and plastic forming, short-run castings
  • Thermoset and thermoplastic manufacturing, hard and soft metals, composites available
  • Full-color concept models, functional prototypes, assembly and embedded electronics
  • Quotes generally in under 24 hours, parts in days

Contract Manufacturing

  • Production quantities ranging from one to tens of thousands
  • A multitude of available manufacturing processes 
  • Expertise in selecting the right manufacturing process for you
  • Personalized attention to detail and top quality customer service
  • Tooling and part library for easy re-orders

3D Scanning and Reverse Engineering

  • Extremely high accuracy 3D digitization of parts as a reproducible STL file
  • Available reverse engineering to create fully defined parametric files and 2D dimensioned drawings
  • Inspection of manufactured goods to identify deviation from the original design
  • Full-color scans also available

Industrial Pattern and Toolmaking

  • Highly accurate tools in days, not months - at a lower cost
  • Patterns and tools available for all standard manufacturing processes: Injection molding, urethane casting, sand and investment casting, sheet metal stamping, plastic forming and much more
  • Additional finishing capabilities available

Displays, Exhibits and Promotions

  • Full color 3D printing can be done as quickly as under 24 hours
  • Print directly from renderings in CAD or BIM modeling software
  • Great for architecture, store display and marketing customers
  • Very fine feature detail and beautiful aesthetic quality

Finishing and Coating

  • A wide range of finish options including paint, powder coat, plating, media blast, tumbling and much more
  • Clear coat and dyed plastic available for cost effective finishing of prototypes and manufactured goods

Use RapidMade to Rapidly Make Industrial Patterns and Tools

Epoxy and Silicone Molds are popular

Epoxy and Silicone Molds are popular

RapidMade Advantages:

  • Reduce Cost
  • Decrease Lead Times
  • Keep Intellectual Property in the US
  • One Stop Shop for Design, Tooling and MFG
  • Unprecedented Ease and Design Freedom

Types of Available Tooling and Parts:

Epoxy and Silicone Molds

  • Tooling in days, not months
  • Reduces investment costs for short run production
  • Lower material costs than 3D Printing
  • Reusable tooling allows for many castings
  • Many available casting materials, including but not limited to:  Urethane, epoxy, polyester, medical and food grade resins, plaster, and many other resins and composite materials

Injection Molds and Inserts

  • Injection mold tooling in days to weeks, not months
  • Very inexpensive part cost
  • Tool life from 10k+ unit from prototype tooling to hundreds of thousands of units from production tooling
  • Top quality aesthetic finish and mechanical properties compared to other Rapid Prototype technologies

Sand Casting Patterns

  • Least expensive way to fabricate quantities of small to large metal parts
  • Typical materials are aluminum, bronze, zinc and steel
  • Tooling can be produced in less than 1 - 2 weeks and cost a fraction of traditional methods
  • Capable suppliers of core boxes, follow boards, gates and risers and other necessary sand cast tooling
  • Unit production in days, not weeks

Investment Cast Patterns, Molds and Waxes

  • Highest quality of finish of all casting methods
  • Typical materials include aluminum, bronze and steel
  • Available tooling includes: master patterns, silicone rubber molds, and wax burnout patterns
  • Can direct print one-off or small batches of direct burnout patterns without investing wax tooling

Vacuum and Thermoform Tooling

  • Heavy gauge production plastics available like ABS, Polyethylene, Polystyrene and Polycarbonate
  • Light gauge packaging plastics available like PET and Polystyrene
  • Can form parts up to 12 feet long
  • Prototype tooling available in as little as a couple of days
  • Production tooling is good for over 100,000 forms and is porous for highest part quality

Carbon Fiber, Fiberglass and Other Composite Tools

  • Decrease tooling and mold lead time compared to traditional methods
  • Increase complexity of design without increasing cost
  • Soluble cores available for hollow parts
  • Waxed finishes available for easy de-molding
  • Save money on prototype and production tools

Sheet Metal Stamping and Forming Tools

  • Very low cost tooling for small batches of sheet metal parts
  • Male and female tooling available for traditional two die stamping as well as single die hydro-forming
  • Tools delivered in a fraction of the time compared to traditional methods
  • Inexpensive and durable composite tooling available as castings from pattern

Robotic Arm End Effectors

  • Custom tooling that fits any part with complex internal geometries like vacuum channels
  • Reduce weight, inertia and material waste during fabrication
  • Simplified designs are easier to engineer, manufacture and assemble - cutting down on cost and time for tooling fabrication
  • Improve tool life by cutting down on breakable components

Molded Paper Pulp Packaging Tools

  • Get high accuracy tooling for a fraction of the cost of machined tools
  • Prototype tooling can also be used as permanent tooling good for thousands or even tens of thousands of molds
  • Tools can be turned around in days instead of weeks
  • Tools can be used as patterns to make tooling for multiple lines or facillities

Custom Jigs, Clamps, Fixtures and Other Tooling

  • Most miscellaneous tooling can be fabricated rapidly and for less cost using additive manufacturing
  • Use existing CAD data for the part to design mating tooling
  • Quickly test for geometric conformity or hold parts for post operations or inspection

Get a Quick Quote today.


Cut Lead Times & Production Costs with Rapid Vacuum & Thermoforming Tooling

Based on your lead time and production quantity, three tooling options are available:

  1. Prototype 3D Printed Tooling:
    1. 24-hour turnaround possible
    2. 30-100 forms
    3. Variety of material and finish options
    4. Reduced cost and lead time compared to traditional tooling
  2. Prototype CNC Foam Tooling:
    1. 1-2 week turnaround
    2. 30-100 forms
    3. Suited to larger parts
    4. Extremely accurate
    5. Significant cost and lead time savings over permanent tooling
  3. Production CNA Aluma-Tek Composite Tooling:
    1. 2-4 week turnaround
    2. 100,000 forms
    3. Very steep angle undercuts
    4. Range of sizes - up to 6+ feet
    5. Extremely accurate
    6. Faster and more economical than machined aluminum

Contact RapidMade to learn more.

RapidMade Selected One of Oregon's Top Manufacturers by Portland Business Journal

Come join us this Thursday to celebrate (details below)!

When: Thursday, October 29th | 7:30 a.m. - 9:00 a.m.

Where: Sentinel Hotel | 614 SW 11th Ave. | Grand Ballroom

#PBJManufacturing

The Oregon Manufacturing Awards are intended to recognize Oregon Manufacturers. This is one of the few public awards programs for manufacturers in the United States.  We're honoring manufacturing firms from all over our region for outstanding operations, products, facilities, and most importantly, the best manufacturing workforces in the world.

As part of the awards program, Tim BoyleCEO of Columbia Sportswear will be joining us for a live Q&A with Publisher Craig Wessel. Tim is at the helm of the 70 year old sportswear apparel giant which his grandparents began in 1938. Although it is a public company today, Columbia remains a family affair. Boyle's 91-year-old mother Gertrude, aka "one tough mother" is chairman of the board, and both his son Joe and sister Sarah Bany are on the board. Tim started working at the company after his father passed away, helping his mother Gert run the fledgling retailer while he was finishing college. He took over as CEO in 1989.

Don't miss this conversation with this fascinating Oregon company, and discussion on where Columbia is headed in the future! 

Companies being recognized this year are:

  • Beaverton Foods
  • D.R. Johnson Lumber
  • Energy Storage Systems
  • Evo, Inc.
  • FEI
  • Indow
  • Microchip Technology Inc.
  • Pratt & Larson Ceramics
  • Premier Press
  • RapidMade
  • Shwood
  • Townshend's Tea Co.
  • Valliscor

 

 

Stop Waiting and Paying for Expensive Tooling to Test Your Rubber Products.

Decrease R&D cycles and save money by direct 3D printing with RapidMade.

How do you prototype or fabricate small batches of rubber, urethane or other elastomers products when?

Soft elastomers won't machine.

Fabrication by sheet lamination and gluing is inaccurate, weak and ugly.

Injection molding and other casting methods can take weeks to months and require expensive tooling.

Instead, 3D print your next rubber product design. RapidMade has successfully manufactured hundreds of gaskets, connectors, covers, plugs and other rubber products for a myriad of industries.

Advantages of using RapidMade for prototype and small-batch rubber product fabrication includes:

Fast turn around - Printed rubber products delivered in as little as 2 - 3 days.

Inexpensive low volume production - 3D printing has no tooling. Order as few as one part on short notice.

Multiple material options - Our 3D printed Thermoplastic Urethane rubber comes in shore 40 and 70 A durometers and a wide range of colors. Find our more about our SLS TPE material.

Multi-material prints - Using our polyjet technology, embed gaskets and other rubber materials directly inside of a rigid plastic assembly. Mix plastics to get over 100 digital materials ranging from shore 20A to 85D hardness.

During and After Prototyping - RapidMade offers expert engineering and design services as well as competitively priced urethane casting and injection molding options for larger volume production.

Fill out our Quick Quote form to get your inquiry started today!